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Quantitative determination of the percolation threshold in waterless microemulsions
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This paper presents and discusses the problem of quantitative determination of the percolation thresh-
old on the basis of interactions within microemulsions. The model recently developed by J. Xu and G.
Stell [J. Chem. Phys. 89, 1101 (1988)] was applied in the case of waterless microemulsions. The fit ob-
tained is quantitatively highly satisfactory despite the approximation used to determine interactions

from the cloud-point curve.

PACS number(s): 82.70.—y, 05.40.+j

INTRODUCTION

The concept of percolation has been widely used over
the last few years to explain the transport properties of
disordered systems. For systems composed of particles
dispersed entirely at random in a continuous medium, the
percolation transition corresponds to the appearance of a
cluster of infinite size. The probability that such a cluster
should appear is, for a system of finite size, all the greater
as the density ¢ of the particles approaches the threshold
¢.. In systems of interacting objects it is not only the
density ¢ which governs the existence of percolation, but
also the interactions between objects, which involve
correlations of positions. This can cause the system to
percolate, in other words to present a cluster of infinite
size, even for relatively low densities. A current theoreti-
cal problem concerns the prediction of the relationship
between percolation threshold and interactions. In this
paper we present experimental results which show that
for very clearly defined systems it is indeed possible to
achieve a satisfactory quantitative interpretation of the
position of the percolation thresholds.

BRIEF SUMMARY OF THE PROBLEM

Understanding the percolation of particles interacting
in a continuous medium presents at first sight two major
difficulties. The first is connected to the definition of an
interaction potential which must be able both to simulate
a system close to reality and, as far as possible, to treat
the problem analytically. The second difficulty is linked
to the definition of the notion of connectedness. For the
study of percolation in lattices, this second difficulty is in
fact not a difficulty at all, since any two particles are
necessarily connected if they belong to two adjoining sites
in the lattice. However, the situation is much more prob-
lematic for percolation in continuous media. A method
able to deal with this case was developed by Coniglio, De
Angelis, and Forlani [1] using earlier work [2] by Hill. It
is based on the pair connectedness function P (r), related
to the probability of finding two particles at distance r
apart belonging to the same cluster. Two particles are
considered as belonging to the same cluster either if there
is a direct bond between them or if they are connected by
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means of other intermediate particles. The P(r) function
has a role comparable to that of the radial distribution
function g () in the classical theory of liquids. At a point
of thermodynamic equilibrium, an equation of the
Ornstein-Zernike type can be written and solved with
conditions and approximations appropriate to the prob-
lem, whether it is a thermal problem (gas-liquid coex-
istence curve) or a percolation problem.

A certain number of models of percolation in continu-
ous media have been proposed. Some [3-8] yield results
obtained by Monte Carlo methods; others provide analyt-
ical solutions. For some simple systems analytical solu-
tions to the problem of percolation have been obtained
using the Percus-Yevick approximation. This is the case,
for example, of adhesive sphere fluids [9] and permeable
sphere fluids [10]. In the Percus-Yevick approximation,
the Ornstein-Zernike equation has been solved numerical-
ly for an interacting fluid by means of the following well
of potential [11]: U(r)=+ow if r<o, U(r)=—¢ if
o<r<>Ao, and U(r)=0 if r>Ao. In this model, two
spheres of diameter o are considered to be connected if
their centers are less than Ao (A > 1) apart. The quantity
€ represents the depth of the well of potential. This mod-
el gives identical results to a previous model [12,13]
within the limit e=0. It is observed that when the dis-
tance of interaction increases, the density (or the number
of particles per unit volume) at the percolation threshold
decreases. A similar study was carried out by Monte
Carlo simulations [4]. For a potential defined in a similar
way, U(r)= —¢ if 0 <r <Ao, connectedness is processed
more generally in this latter work. In these simulations,
two particles are considered to be connected if their
centers are less than 8¢ apart, § being a parameter unre-
lated to A. When A=30, the model proposed by Safran,
Webman, and Grest [4] is identical to those of Netemeyer
and Glandt [11] and De Simone, Demoulini, and Stratt
[12,13]. If the results of these three last models are com-
pared within the limit e=0 (where the degree of attrac-
tion is zero) it is observed that there is good agreement
between the ‘results they yield, even if the values given by
Safran, Webman, and Grest [4] are apparently slightly
lower than those given by the other two methods.

The model fluids we have just mentioned, which can be
resolved analytically, are too particular to represent a
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real fluid, even a simple one. The well of potential model
possessing both attractive and repulsive interaction
would be more realistic. There is a model fluid, that of
Yukawa, which presents the advantage of giving a realis-
tic representation of a real fluid, as well as enabling
analytical calculation. The interaction potential is
defined as follows:

o for x <1
N
BU(r)= — > kjexp[—z;(x —1)]/x forx>1,

i=1

in which B=1/(kzT) where ky is the Boltzmann con-
stant, 7T is the absolute temperature, and x =r /d, where r
is the distance between two particles and d is the diame-
ter of the hard sphere. The quantities k; and z; are
Yukawa’s parameters and correspond, respectively, to
the intensity and the range of the interaction. The more
terms introduced into the interaction model, the closer
the model fluid will be to reality.

It is possible to find real systems corresponding to a
dispersion of spheres in a continuum, where the spheres
interact, and the system presents a percolation transition.
These are certain microemulsions and more particularly
ternary microemulsions obtained with sodium bis(2-
ethylhexyl) sulfosuccinate (AOT) as a surfactant. The
reader may wish to consult a recent article [14] on the be-
havior of electrical conductivity, dielectric relaxation,
and viscosity of these systems as a function of various pa-
rameters (volume fraction in dispersed phase, tempera-
ture, salinity, chemical composition, etc.). For these sys-
tems, the percolation model developed by Xu and Stell
[15] for a Yukawa fluid at N =1 has already been applied
[16,17] to the case of a ternary water-AOT-decane mi-
croemulsion. In this study we present results obtained
with a system of a completely different nature, the water-
less microemulsion glycerol-AOT-isooctane, which
presents the phenomenon of percolation [18]. We show
that since these two systems share the same structural
description (here dispersion of spheres in dynamic move-
ment within a continuum [19]), there is indeed a general
description of the interpretation of the position of per-
colation thresholds.

XU AND STELL’S MODELS
General considerations

The pair connectedness function # (r) plays a central
role in the study of the formation of clusters. A *(r) is
proportional to the probability of finding two particles at
a distance r from each other and belonging to the same
cluster. The mean number of particles belonging to the
cluster is therefore given by

S=1+4mp [ “r?h*(r)dr , (1)

in which p is the density, i.e., the number of particles per
unit volume, such that the volume fraction of spheres of
density p and diameter d is ¢ =(7p/6)d>. The percola-
tion transition corresponds to the divergence of S, be-
cause that is the point where a cluster of infinite size ap-
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pears. The function % *(r) satisfies the Ornstein-Zernike
equation

ht(n=c(nN+p [c¢T(rHh(Ir—r|dr’ ,

in which f dr' is a notation for the integral of volume
throughout three-dimensional space. One could also
write & (r)=c " (r)+pc T(r)oh T (r) in which the symbol
o represents the three-dimensional convolution. The
function ¢ " (r) is the direct correlation function.

To solve both the thermal and percolation problems, it
is necessary to make approximations. Among the best-
known approximations, that of Percus-Yevick has al-
ready been used. For the thermal problem of the Yu-
kawa liquid, Xu and Stell [15] used the mean spherical
approximation (MSA), which gives rise to the following
conditions: h(r)=—1 if r<d, c(r)=k(e ?"/4" V),
(r/d) if r >d. Taking account of these conditions it was
possible to solve the Ornstein-Zernike equation for a Yu-
kawa fluid with N components [20]. The calculations are
long and fastidious; the reader will find a complete ac-
count of the intermediate results in a recent paper by
Saidi [21], which reviews a large number of studies car-
ried out on this question [12,14,15,20-24].

Thermal problem

All the previous studies show that the Yukawa fluid
presents a gas-liquid-type transition. Solution of the
thermal problem provides among other data the points at
which compressibility becomes infinite and thus the coex-
istence curve, or spinodal curve, can be obtained. As the
interaction has an intensity ke? which would appear to
be a priori dependent on the temperature 7, and on the
basis of knowledge of the range of interaction z, one can
obtain the ¢ corresponding to the coexistence curve. The
pair T,¢ obtained thereby defines a point on the spinodal.
This curve has been defined as being

z? o—yy
k= U, , @
T (c—y)y | ° )
with
_llz=2 - _ 1 |z’+22—4 -
2z | z+2 AT D s— ’
442z —2z2 Uy
== U =1 + 2+ 2.41/72 ,
202+2) U, YoTzlp Pl

U=2-Vp)U,~T,
where

1+2
1—¢

When z is fixed, when ¢—0, Eq. (2) can be simplified to
k¢=F(z). Figures 1(a) and 1(b) represent the coex-
istence curves for two values of Yukawa’s parameter z,
which characterizes the range of the interaction [respec-
tively, z =1.8 for Fig. 1(a) and z =7.5 for Fig. 1(b)]. The
parameter 7 which is involved in the figures serves for the
percolation problem and will be introduced below.

2
R F=%zz\/; .




3414
_ (a)
k-! I
L [ !
Al B c!
4.0 oy !
P [
L | i |
B - |
3.0 Lo |
i | 1' I
2ol || |
. I
B b !
L ] | |
[ |
1o\ — |
/_\
0 1 I FE B 1 1 | 1 J
[0] 0.20 040 o
_ (b)
k- i
L I
| |
0.8} I !
| I |
L Aj Bl c!
1 ! !
0.6 b | I
P !
/I ! ,'
0.4+ / /
/ !
/
L / // |
’ , !
o‘2—//’—/\/
o) TS W U RN SN S SN S N SN SR |
0 0.25 0.50 ¢
FIG. 1. Spinodal line ( ) and percolation line (— — —)

calculated using two values of Yukawa’s parameter z for the
first Xu and Stell model [15]. (a) z=1.8 and 7=0.7061 ( A4),
7=0.7907 (B), 7=0.9134 (C); (b) z=7.5 and 7=0.8722 (4),
7=0.9315 (B), 7=0.9702 (C).

Percolation problem

Two models have been developed [15]. The first in-
volves a parameter D such that if two particles of diame-
ter d have their centers less than D apart, they are au-
tomatically connected. One assumes 7=d /D and one
defines H(r)=1if r<r/D <1land H(r)=0ifr/D > 1, in
which H (r) is the probability of finding two particles at a
distance r from each other (distance between their
centers) and directly connected. Hence they show [15]
that Eq. (1) may be rewritten in the form

D -2
S=|1— .
|[1=270 [ @ r1ar | 3)
One introduces the function Q (), which obeys
__dow Do
rg(r) < +amp [ g r —shir —s)Q()ds , @)
in which g(r), the radial distribution function, is deter-

mined on the basis of the study of the thermal problem.
Solving Eq. (4) gives Q(r) and this equation has an
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FIG. 2. Spinodal line ( ) and percolation line (— — —)
for the second Xu and Stell model [15]. z=1.8 (4) A=0.1248,
(B) A=0.3868, (C) A=0.5611.

analytical solution if L <7< 1, a result which had already
been verified [12]. Obtaining Q (r) is complicated, but the
percolation threshold can then be obtained easily by writ-
ing that the mean size S of the clusters diverges at the
threshold, in other words that 2mwp, f é) Q(rdr=1, in
which p, represents the critical density.

In the second model the function H(r) is defined in
more general terms. It represents the probability that
two particles located at a distance r apart should be con-
nected when they no longer have any interaction with
any other particle, in other words when the density tends
towards zero. We have 0= H (r) =<1 but otherwise H (r)
is random. One might for example envisage that H(r) is
the probability that two particles separated by a distance
r can exchange electrical charges. It is in this sense that
the second model seems likely to prove more satisfactory
for microemulsions. With c(r)=k(e 2"/~ Vr /d), Xu
and Stell [15] found the percolation threshold to be at
k ~!'=MA¢/F(z) in which A is an adjustable parameter and
F(z) is the limit for the right-hand member of Eq. (2)
when ¢ tends towards zero. Since F(z) is constant at
fixed z, the place for the percolation thresholds is, for
each value of A, a straight line which in the k ~'-¢ plane
passes through the point ¢ =0. Figure 2 provides an ex-
ample of the results obtained [15] for different values of
A,z being fixed.

APPLICATION TO THE CASE
OF MICROEMULSIONS

In the case of microemulsions with AOT, a demixing
phenomenon is observed for a given volume fraction
when temperature is increased. To make the above
theory [15] applicable to these systems, it is necessary to
introduce explicitly the variations k (7T') of the intensity of
the interactions with temperature.

Water-AOT-decane microemulsions [16,17]

The authors assumed ke’=k,+k,T +k,T? in which
ko, k,, and k, are empirical coefficients determined to
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FIG. 3. Water-AOT-decane system; n =40.8. The experi-
mentally determinated demixing curve (O) and percolation line
(@) obtained by Cametti et al. [16], compared to the computed
spinodal line and percolation locus for the second Xu and Stell
model [15].

adjust neutron-scattering results. If 7 is in °C, one has
ko=—0.329 (we should indicate here that there was a
typographical error in the original article), k,=0.013,
and k,=2.124X10"* for the molecular ratio n
=[H,0]/[AOT]=40.8 with a range of interaction
z=0.73 [16]. In these conditions the authors observe an
excellent fit between the experimental results for the
¢.(T) percolation threshold line and the predictions of
the second Xu and Stell model. Figure 3 represents the
spinodal curve calculated on the basis of this model, the
experimental demixing curve, and the experimental and
calculated percolation threshold lines. The agreement is
extremely satisfactory. The reduction of the threshold
with 7T had been previously discussed by us [25] from a
qualitative point of view based on a model [3,4] and tak-
ing account of the fact that the interaction distance and
the intensity of interaction increase with temperature as
light-scattering experiments have shown [26]. But the
above result [16] on water-AOT-decane microemulsions
is the first satisfactory quantitative prediction of the per-
colation threshold line of a real microemulsion. Recently
[17], supposing that the cloud-point curve is similar to
the spinodal line, they succeed also to calculate the per-
colation line without the knowledge of the neutron-
scattering results. They fitted simultaneously both the
spinodal and the percolation line. This hypothesis, postu-
lated independently at the same time by us [21,27], will
be discussed in detail below, in the case of waterless mi-
croemulsions. But in our case we will show that it is
necessary to fit only the spinodal curve in order to obtain
the percolation line.

Waterless glycerol-AOT-isooctane microemulsions

This system presents a monophase domain at 25°C and
it can be observed that the maximum value of the molec-
ular ratio [glycerol]/[AOT] is slightly higher than 4. If a
microemulsion of molecular ratio n» =4 and a given
volume fraction ¢ is heated it presents a demixing
phenomenon for a certain temperature T,;. Figures 4(a)
and 4(b) represent in the T-¢ and 1/T —¢ planes the
demixing curve and the locus of the previously deter-
mined percolation thresholds [14,18,28]. It will be noted
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that the results obtained are comparable to those ob-
served for systems with water, in other words a reduction
of the threshold as temperature increases [14,16,29].

For this system we have no previous data concerning
the intensity of interactions. We therefore determined
approximately the function k£(7) on the basis of the
above theory [15] assuming that the spinodal is identical
with the demixing curve [17,21,27]. On Fig. 4 we have
represented the experimental points. As ¢, is known it is
possible, for a given z, to calculate k using Eq. [2]. How-
ever, if z is not carefully selected, the function k (T) is not
univocal as regards temperature. Numerical analysis has
shown us that if z=0.435 the resultant k(7) curve is

T(C) (o)

604

40

20+

T T U T
(o] 0.1 02 03 04 05 ¢

3.5

3.3

3.2

/T (103k™

3.1

3.0 T T T T
(0] o.l 0.2 0.3 0.4 ¢

FIG. 4. Glycerol-AOT-isooctane system; n =4. The experi-
mentally determinated demixing curve (O ) and percolation line
(@) compared to the computed spinodal line and percolation
locus for the second model. (a) T-¢ diagram; (b) T~ '-¢ dia-
gram.
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FIG. 5. Glycerol-AOT-iso-octane system; n =4. (@) experi-
mental percolation threshold and percolation line computed for
the first model. 7=0.650 (— — —) and 7=0.7094 ( ).

univocal. This curve can be represented by the arc of a
parabola and we obtained k(T)=a,+a,;T +a,T* with
a,=8.982599X1072, a;=—3.909196X107%  and
a,=1.482 685X 10" % when T is expressed in °C. Figures
4(a) and 4(b) represent the demixing curve calculated in
this way. The values obtained for interaction in the case
of the waterless microemulsions studied here can be com-
pared with those for the system with water: water-AOT-
decane [16]. The interaction potential appears to have a
greater range for waterless systems since zgyero1 =0.435
whereas z,,,.. =0.73. As regards the intensity of the in-
teraction, this increases more quickly with increasing
temperature in the case of the system with water. It
should be recalled, however, that the molecular ratio in
the glycerol-AOT-isooctane system, which is 4, is smaller
than those used for the water-AOT-decane system, which
are 30, 40.8, and 50.

For the locus of the percolation thresholds we used this
interaction estimate to apply Xu and Stell’s theory [15].
Their first model does not allow experimental results to
be taken into account. This is because whatever the

1

value of 7 between 1 and 1, one obtains a curve which

falls rapidly in the T,-¢, plane (in which T, is the per-
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colation temperature and ¢, is the percolation threshold).
Figure 5 represents the threshold line calculated for this
model with two different values of 7. This can usefully be
compared with Fig. 1 in which the percolation line is also
a rapidly falling straight line.

As was also observed for systems with water [16,17],
the second model provides a better representation of the
experimental results. Knowing the experimental values
of Tp and qSP, we determined the best value of 7, which,
taking account of the function k (7) minimizes the devia-
tions between experimental and calculated values. It can
be seen that for A=0.579, with the k(7T) function and z
determined with the help of the thermal problem, a satis-
factory fit is obtained for the locus of percolation thresh-
olds. The calculated threshold line is indicated on Fig. 4.

CONCLUSION

It is satisfying to observe that despite the approxima-
tions made to calculate the interactions the values of the
percolation thresholds are determined with a fair degree
of accuracy. It is very surprising that despite the empiri-
cal nature of the hypothesis (assuming that the spinodal
and the demixing curve would be identical), there was
such a good quantitative fit between experimental and
calculated values, but, in any case, it is interesting to
know that a satisfactory theoretical model can, in certain
conditions, calculate quantitatively the value of thresh-
olds and thus complete the link between the threshold
value and interactions within the system. It should be
stressed that, as we mentioned above, the microemulsions
presented here naturally correspond to a dispersion of
spheres in Brownian movement in a continuum. These
systems are therefore well adapted to the requirements of
testing the theory presented.

We now have a complete description of the percolation
phenomenon, the properties of these systems obeying
scaling laws with specific exponents (the reader could
consult a recent review [14]). To continue further
research into the prediction of these thresholds, we now
need to develop a theory able to calculate the value of in-
teractions, but this is a subject that goes well beyond the
scope of this paper.
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